If \(\lambda\) is an eigenvalue of \(A\) with eigenvector \(\mathbf{v}\), then \(A\mathbf{v} = \lambda\mathbf{v}\).
Then \(A^2\mathbf{v} = A(A\mathbf{v}) = A(\lambda\mathbf{v}) = \lambda(A\mathbf{v}) = \lambda(\lambda\mathbf{v}) = \lambda^2\mathbf{v}\).
So, if \(\lambda\) is an eigenvalue of \(A\), then \(\lambda^2\) is an eigenvalue of \(A^2\).
The eigenvalues of \(A^2\) are:
- \(1^2 = 1\)
- \(i^2 = -1\)
- \((-i)^2 = -1\)
The eigenvalues of \(A^2\) are 1, -1, -1.