We split the integral: \( \int_{0}^{1} \frac{\sin^2 x}{x^2} \,dx + \int_{1}^{\infty} \frac{\sin^2 x}{x^2} \,dx \).
For the first part, as \(x \to 0\), \(\frac{\sin x}{x} \to 1\), so \(\frac{\sin^2 x}{x^2} \to 1\). The integrand is bounded, so \( \int_{0}^{1} \frac{\sin^2 x}{x^2} \,dx \) is a proper integral and converges.
For the second part, \( \int_{1}^{\infty} \frac{\sin^2 x}{x^2} \,dx \). We know \(0 \le \sin^2 x \le 1\), so \(0 \le \frac{\sin^2 x}{x^2} \le \frac{1}{x^2}\).
Since \( \int_{1}^{\infty} \frac{1}{x^2} \,dx \) converges (p-integral with \(p=2\)), by the Direct Comparison Test, \( \int_{1}^{\infty} \frac{\sin^2 x}{x^2} \,dx \) converges.
Since both parts converge, the original integral
converges.
Source: Ostaszewski, Section 18.9.