Based on the subject guide and recommended texts for MT2176.
1. Which of the following best describes the integral \( \int_{1}^{\infty} \frac{1}{x^2} \, dx \)?
2. Determine if the integral \( \int_{1}^{\infty} \frac{1}{x} \, dx \) converges or diverges.
3. Which of the following best describes the integral \( \int_{0}^{1} \frac{1}{\sqrt{x}} \, dx \)?
4. Determine if the integral \( \int_{0}^{1} \frac{1}{x^2} \, dx \) converges or diverges.
5. The integral \( \int_{0}^{\infty} e^{-x} \, dx \) is...
6. Using the comparison test, what can be said about \( \int_{1}^{\infty} \frac{\sin^2 x}{x^2} \, dx \)?
7. The integral \( \int_{-\infty}^{\infty} x e^{-x^2} \, dx \) is...
8. What is the correct classification for the integral \( \int_{0}^{\infty} \frac{1}{x-1} \, dx \)?
9. Using the Limit Comparison Test, what can you conclude about \( \int_{1}^{\infty} \frac{x^2+1}{x^4+x} \, dx \)?
10. The integral \( \int_{0}^{\pi/2} \tan(x) \, dx \) is...
11. Identify the type of improper integral: \( \int_{-1}^{1} \frac{1}{x} \, dx \)
12. Does \( \int_{1}^{\infty} \frac{1}{\sqrt{x}} \, dx \) converge or diverge?
13. The integral \( \int_{0}^{1} \ln(x) \, dx \) is...
14. Test the convergence of \( \int_{2}^{\infty} \frac{1}{x \ln x} \, dx \).
15. What kind of integral is \( \int_{-\infty}^{\infty} \frac{1}{1+x^2} \, dx \)?
16. For what values of k does \( \int_{1}^{\infty} x^k \, dx \) converge?
17. Test the convergence of \( \int_{0}^{1} \frac{1}{x^3} \, dx \).
18. Evaluate \( \int_{0}^{\infty} \frac{1}{1+x^2} \, dx \).
19. Does \( \int_{1}^{\infty} \frac{1}{x^2+x} \, dx \) converge or diverge?
20. What is the value of \( \int_{0}^{1} \frac{1}{\sqrt[3]{x}} \, dx \)?
21. The integral \( \int_{0}^{\infty} \frac{dx}{e^x+1} \) is...
22. Which test is most appropriate to determine the convergence of \( \int_{1}^{\infty} \frac{x}{x^3+1} \, dx \)?
23. The integral \( \int_{0}^{2} \frac{1}{(x-1)^2} \, dx \) is...
24. Does \( \int_{e}^{\infty} \frac{1}{x (\ln x)^2} \, dx \) converge or diverge?
25. The integral \( \int_{0}^{\infty} x^2 e^{-x} \, dx \) (the Gamma function \(\Gamma(3)\)) is...
26. What is the type of the integral \( \int_{1}^{\infty} \frac{1}{x^2-1} \, dx \)?
27. Test the convergence of \( \int_{1}^{\infty} \frac{\arctan(x)}{x^2} \, dx \).
28. The integral \( \int_{0}^{1} \frac{dx}{\sqrt{1-x^2}} \) is...
29. Does \( \int_{0}^{\infty} \frac{x}{e^x} \, dx \) converge or diverge?
30. Using the Limit Comparison Test, what can you conclude about \( \int_{2}^{\infty} \frac{1}{\sqrt{x^2-1}} \, dx \)?
31. The integral \( \int_{1}^{\infty} \sin(1/x) \, dx \) is...
32. What is the value of the Cauchy Principal Value of \( \int_{-1}^{1} \frac{1}{x} \, dx \)?
33. The integral \( \int_{0}^{\infty} \frac{\cos x}{\sqrt{x}} \, dx \) is...
34. For what values of p does \( \int_{0}^{1} \frac{1}{x^p} \, dx \) converge?
35. Test the convergence of \( \int_{0}^{\infty} \frac{dx}{\sqrt{x}(1+x)} \).
36. The integral \( \int_{1}^{\infty} \frac{\ln x}{x} \, dx \) is...
37. Evaluate \( \int_{1}^{\infty} \frac{1}{x(x+1)} \, dx \).
38. The integral \( \int_{0}^{\pi} \frac{\sin x}{x} \, dx \) is...
39. Does \( \int_{0}^{\infty} \frac{1}{x^p+x^q} \, dx \) converge if p>1 and q<1?
40. The integral \( \int_{0}^{1} x \ln x \, dx \) is...
41. Test the convergence of \( \int_{1}^{\infty} \frac{x!}{(x+2)!} \, dx \).
42. The integral \( \int_{0}^{\infty} \sin(x^2) \, dx \) (Fresnel integral) is...
43. Does \( \int_{0}^{1} \frac{e^x}{x} \, dx \) converge or diverge?
44. The integral \( \int_{1}^{\infty} \frac{1}{x} - \frac{1}{x+1} \, dx \) is...
45. What is the correct way to begin evaluating \( \int_{-1}^{\infty} \frac{1}{x^2} \, dx \)?
46. Test the convergence of \( \int_{0}^{1} \frac{dx}{e^x - 1} \).
47. The integral \( \int_{1}^{\infty} \frac{1}{x^2} \, dx \) converges to...
48. Does \( \int_{0}^{1} \frac{\tan x}{x^2} \, dx \) converge or diverge?
49. The integral \( \int_{0}^{\infty} e^{-x^2} \, dx \) (Gaussian integral) is...
50. Does the integral \( \int_{0}^{\infty} e^{-x} \sin(x) \, dx \) converge or diverge?