MT2176 Further Calculus: Improper Integrals Quiz

Based on the subject guide and recommended texts for MT2176.

1. Which of the following best describes the integral \( \int_{1}^{\infty} \frac{1}{x^2} \, dx \)?





2. Determine if the integral \( \int_{1}^{\infty} \frac{1}{x} \, dx \) converges or diverges.





3. Which of the following best describes the integral \( \int_{0}^{1} \frac{1}{\sqrt{x}} \, dx \)?





4. Determine if the integral \( \int_{0}^{1} \frac{1}{x^2} \, dx \) converges or diverges.





5. The integral \( \int_{0}^{\infty} e^{-x} \, dx \) is...





6. Using the comparison test, what can be said about \( \int_{1}^{\infty} \frac{\sin^2 x}{x^2} \, dx \)?





7. The integral \( \int_{-\infty}^{\infty} x e^{-x^2} \, dx \) is...





8. What is the correct classification for the integral \( \int_{0}^{\infty} \frac{1}{x-1} \, dx \)?





9. Using the Limit Comparison Test, what can you conclude about \( \int_{1}^{\infty} \frac{x^2+1}{x^4+x} \, dx \)?





10. The integral \( \int_{0}^{\pi/2} \tan(x) \, dx \) is...





11. Identify the type of improper integral: \( \int_{-1}^{1} \frac{1}{x} \, dx \)





12. Does \( \int_{1}^{\infty} \frac{1}{\sqrt{x}} \, dx \) converge or diverge?



13. The integral \( \int_{0}^{1} \ln(x) \, dx \) is...





14. Test the convergence of \( \int_{2}^{\infty} \frac{1}{x \ln x} \, dx \).



15. What kind of integral is \( \int_{-\infty}^{\infty} \frac{1}{1+x^2} \, dx \)?





16. For what values of k does \( \int_{1}^{\infty} x^k \, dx \) converge?





17. Test the convergence of \( \int_{0}^{1} \frac{1}{x^3} \, dx \).



18. Evaluate \( \int_{0}^{\infty} \frac{1}{1+x^2} \, dx \).





19. Does \( \int_{1}^{\infty} \frac{1}{x^2+x} \, dx \) converge or diverge?



20. What is the value of \( \int_{0}^{1} \frac{1}{\sqrt[3]{x}} \, dx \)?





21. The integral \( \int_{0}^{\infty} \frac{dx}{e^x+1} \) is...



22. Which test is most appropriate to determine the convergence of \( \int_{1}^{\infty} \frac{x}{x^3+1} \, dx \)?





23. The integral \( \int_{0}^{2} \frac{1}{(x-1)^2} \, dx \) is...



24. Does \( \int_{e}^{\infty} \frac{1}{x (\ln x)^2} \, dx \) converge or diverge?



25. The integral \( \int_{0}^{\infty} x^2 e^{-x} \, dx \) (the Gamma function \(\Gamma(3)\)) is...



26. What is the type of the integral \( \int_{1}^{\infty} \frac{1}{x^2-1} \, dx \)?





27. Test the convergence of \( \int_{1}^{\infty} \frac{\arctan(x)}{x^2} \, dx \).



28. The integral \( \int_{0}^{1} \frac{dx}{\sqrt{1-x^2}} \) is...





29. Does \( \int_{0}^{\infty} \frac{x}{e^x} \, dx \) converge or diverge?



30. Using the Limit Comparison Test, what can you conclude about \( \int_{2}^{\infty} \frac{1}{\sqrt{x^2-1}} \, dx \)?





31. The integral \( \int_{1}^{\infty} \sin(1/x) \, dx \) is...



32. What is the value of the Cauchy Principal Value of \( \int_{-1}^{1} \frac{1}{x} \, dx \)?





33. The integral \( \int_{0}^{\infty} \frac{\cos x}{\sqrt{x}} \, dx \) is...




34. For what values of p does \( \int_{0}^{1} \frac{1}{x^p} \, dx \) converge?





35. Test the convergence of \( \int_{0}^{\infty} \frac{dx}{\sqrt{x}(1+x)} \).



36. The integral \( \int_{1}^{\infty} \frac{\ln x}{x} \, dx \) is...



37. Evaluate \( \int_{1}^{\infty} \frac{1}{x(x+1)} \, dx \).





38. The integral \( \int_{0}^{\pi} \frac{\sin x}{x} \, dx \) is...





39. Does \( \int_{0}^{\infty} \frac{1}{x^p+x^q} \, dx \) converge if p>1 and q<1?



40. The integral \( \int_{0}^{1} x \ln x \, dx \) is...





41. Test the convergence of \( \int_{1}^{\infty} \frac{x!}{(x+2)!} \, dx \).



42. The integral \( \int_{0}^{\infty} \sin(x^2) \, dx \) (Fresnel integral) is...



43. Does \( \int_{0}^{1} \frac{e^x}{x} \, dx \) converge or diverge?



44. The integral \( \int_{1}^{\infty} \frac{1}{x} - \frac{1}{x+1} \, dx \) is...



45. What is the correct way to begin evaluating \( \int_{-1}^{\infty} \frac{1}{x^2} \, dx \)?




46. Test the convergence of \( \int_{0}^{1} \frac{dx}{e^x - 1} \).



47. The integral \( \int_{1}^{\infty} \frac{1}{x^2} \, dx \) converges to...





48. Does \( \int_{0}^{1} \frac{\tan x}{x^2} \, dx \) converge or diverge?



49. The integral \( \int_{0}^{\infty} e^{-x^2} \, dx \) (Gaussian integral) is...



50. Does the integral \( \int_{0}^{\infty} e^{-x} \sin(x) \, dx \) converge or diverge?