MT2176 Further Calculus: Improper Integrals Quiz (Part 2)

A second set of 50 questions on Improper Integrals.

1. The integral \( \int_{1}^{\infty} \frac{dx}{x^{1.01}} \) is:



2. The integral \( \int_{0}^{1} \frac{dx}{x^{0.99}} \) is:



3. Test the convergence of \( \int_{1}^{\infty} \frac{e^{-x}}{x} \, dx \).



4. What is the value of \( \int_{-\infty}^{0} e^{2x} \, dx \)?





5. The integral \( \int_{0}^{4} \frac{dx}{x-2} \) is:



6. Using the Limit Comparison Test, investigate \( \int_{1}^{\infty} \frac{1}{x + \sqrt{x}} \, dx \).




7. The integral \( \int_{0}^{\infty} \frac{\arctan x}{1+x^2} \, dx \) is:



8. What is the type of integral \( \int_{0}^{1} \frac{dx}{x^2 - 4} \)?





9. Does \( \int_{1}^{\infty} \frac{1-e^{-x}}{x} \, dx \) converge or diverge?



10. The integral \( \int_{0}^{1} \frac{dx}{\sqrt[3]{1-x}} \) is:



11. Test the convergence of \( \int_{2}^{\infty} \frac{dx}{x^2 - 1} \).



12. The integral \( \int_{0}^{\infty} \frac{x^3}{e^x} \, dx \) is related to which function?





13. Does \( \int_{0}^{\pi/2} \sec(x) \, dx \) converge or diverge?



14. The integral \( \int_{1}^{\infty} \frac{\cos^2 x}{x^3} \, dx \) is:



15. What is the value of \( \int_{0}^{1} \frac{dx}{\sqrt{1-x}} \)?





16. The integral \( \int_{-\infty}^{\infty} \frac{x}{1+x^2} \, dx \) is:




17. Test the convergence of \( \int_{0}^{1} \frac{\ln x}{x} \, dx \).



18. The integral \( \int_{1}^{\infty} \frac{dx}{x \sqrt{x^2-1}} \) is:



19. Does \( \int_{0}^{\infty} \frac{\sin x}{x} \, dx \) (Dirichlet Integral) converge or diverge?



20. The integral \( \int_{0}^{1} \frac{1}{e^x - e^{-x}} \, dx \) is:



21. For what values of p does \( \int_{e}^{\infty} \frac{dx}{x(\ln x)^p} \) converge?





22. The integral \( \int_{0}^{\infty} e^{-x} \cos(x) \, dx \) is:




23. Evaluate \( \int_{1}^{\infty} \frac{dx}{x^3} \).





24. The integral \( \int_{0}^{1} \frac{dx}{x - x^2} \) is:



25. Test the convergence of \( \int_{1}^{\infty} \frac{x^2}{2^x} \, dx \).



26. The integral \( \int_{0}^{\infty} \frac{dx}{x^2 + 3x + 2} \) is:



27. Does \( \int_{0}^{1} \frac{\sin x}{\sqrt{x}} \, dx \) converge or diverge?



28. The integral \( \int_{1}^{\infty} \frac{dx}{e^x - 2^x} \) is:



29. What is the Cauchy Principal Value of \( \int_{-1}^{1} \frac{1}{x^3} \, dx \)?




30. The integral \( \int_{0}^{\infty} \frac{1}{x^2} \, dx \) is:



31. Test the convergence of \( \int_{1}^{\infty} \frac{\ln(x)}{x^2} \, dx \).



32. The integral \( \int_{0}^{1} \frac{dx}{x^2+x} \) is:



33. Does \( \int_{1}^{\infty} \frac{x^2-1}{x^4+1} \, dx \) converge or diverge?



34. The integral \( \int_{0}^{1} \frac{dx}{\sqrt{x-x^2}} \) is:



35. Test the convergence of \( \int_{1}^{\infty} \frac{1}{\sqrt{x^3+1}} \, dx \).



36. The integral \( \int_{0}^{\infty} x e^{-x^2} \, dx \) is:




37. Does \( \int_{0}^{1} \frac{dx}{\sin x} \) converge or diverge?



38. The integral \( \int_{1}^{\infty} \frac{1}{x+e^x} \, dx \) is:



39. Test the convergence of \( \int_{0}^{1} \frac{dx}{1 - \cos x} \).



40. The integral \( \int_{1}^{\infty} \frac{dx}{x^{p}} \, dx \) converges if and only if:





41. Does \( \int_{0}^{\infty} \frac{dx}{1+x^3} \) converge or diverge?



42. The integral \( \int_{0}^{1} \frac{dx}{\ln(x+1)} \) is:



43. Test the convergence of \( \int_{1}^{\infty} \frac{1}{x^2 + \sin x} \, dx \).



44. The integral \( \int_{0}^{1} \frac{dx}{x^p} \) converges if and only if:





45. Does \( \int_{1}^{\infty} \frac{1}{x(1+\ln x)} \, dx \) converge or diverge?



46. The integral \( \int_{0}^{\infty} \frac{e^{-x}}{\sqrt{x}} \, dx \) is:



47. Test the convergence of \( \int_{1}^{\infty} \frac{x^x}{e^x} \, dx \).



48. The integral \( \int_{0}^{1} \frac{dx}{\sqrt[3]{x^2}} \) is:



49. Does \( \int_{1}^{\infty} \frac{\sin(x)}{x^2} \, dx \) converge absolutely?



50. The integral \( \int_{1}^{\infty} \frac{dx}{x^{1/x}} \) is: